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There is a long history for enzyme (protein) immobilization using
solid supports via adsorption, encapsulation, and covalently linking.1

One of the most widely used methods for immobilizing enzymes
is encapsulation inside sol-gel silica.2 However, due to small pore
size and non-open-pore structure, most studies showed lower
specific activity than that of the free enzymes in solution.3

Unlike sol-gel silica, mesoporous silica provides a rigid, uniform
open-pore structure. Functionalized mesoporous silica (FMS) has
exhibited very high affinity for binding heavy metal ions with
mercapto functional groups.4 FMS could have great potential for
high enzyme loading, provided that (1) the pore size is sufficiently
large for the enzyme to be “comfortably” hosted and also for its
substrate and product to access and diffuse easily through open
pore channel and (2) appropriate functional groups provide high
affinity for protein molecules. Recently, mesoporous silica has
begun to attract attention for enzyme immobilization.5,6 The best
results showed that 84% of the initial specific activity remained
after immobilization albeit with very low protein loading (0.2%,
w/w), presumably due to the small pore size (<6 nm). To our
knowledge, the great potential advantage of FMS for enzyme
entrapment has not yet been realized.

In this work, we used mesoporous silica with large pores that
were subsequently functionalized to thereby yield high protein
loading and enhanced enzyme activity simultaneously. Surprisingly,
by introducing only 2% coverage of HOOC-CH2-CH2- groups on
the internal silanol wall, the specific activity of organophosphorus
hydrolase (OPH) entrapped could reach more than 2 times as high
as that of the free enzyme prior to immobilization. The original
unfunctionalized mesoporous silica (UMS), prepared by using
nonionic block copolymer surfactant as the template,7 had a pore
size of 30 nm by the Barrett-Joyner-Halenda method,8 while the
surface area was as high as 533 m2/g with an average bead size of
12-15 µm. We also used normal porous silica (NPS) for com-
parison experiments throughout this work.9 The N2 adsorption
isotherms suggest that NPS had very wide pore size distribution,
while the surfactant templated mesoporous silica had very narrow
pore size distribution. Figure 1a shows the transmission electron
microscopy (TEM) image of NPS made of silica particles partially
sintered together. In comparison, the TEM image of the mesoporous
silica (Figure 1b) reveals a uniform cagelike porous structure.7

To prepare FMS, we mixed Tris-(methoxy)carboxylethylsilane
(TMCES) or Tris-(methoxy)aminopropylsilane (TMAPS) with
mesoporous silica in an appropriate solvent.4,10We selected TMCES
and TMAPS as functionalization reagent mainly because HOOC-
and NH2- would offer electrostatic, H-bond, and hydrophilic
interaction with the charged amino acid residues of the protein
molecules.

We selected OPH for this work since it has been widely
investigated for biosensing and decontamination of poisonous
agents.11 OPH has a well-known crystal structure (a dimer with
two identical monomers) and dimensions of about 92 Å× 56 Å ×
40 Å.12 By incubating FMS in OPH stock solution, the enzyme
was spontaneously sequestered into the functionalized mesopores.13

Figure 2 shows the protein amount and activity of OPH
immobilized with 1 mg of each silica support. The isoelectric point
(pI) of OPH is 8.3; thus, the overall charge of the protein is positive
at pH 7.5.13 As shown, the positively charged OPH could be
entrapped in UMS with a protein loading of 3.1% (w/w) due to
electrostatic interaction with the negatively charged silanol surface.
However, it displayed a low specific activity of 935 units/mg of
entrapped protein (calculated from Figure 2, see relative heights).
In contrast, higher protein loading and much higher specific activity
were obtained with the negatively charged HOOC-FMS. When a
2% surface coverage of carboxylic groups was introduced to the
mesoporous silica, a higher protein loading of 4.7% (w/w) with
significantly enhanced specific activity of 4182 units/mg was
obtained, showing an exceptional high immobilization efficiency
of more than 200% (the ratio of the specific activity of the entrapped
OPH with that of the free OPH in solution).12 These results
demonstrate that the organic functionalization (-CH2-CH2-COOH)
provided the enzyme with a benign surrounding microenvironment,
showing higher affinity for the protein and inducing a dramatic
change of specific activity. With 20% coverage of HOOC-FMS, a
high specific activity of 4109 units/mg was also achieved, but the
total protein loading and activity were reduced. We speculate that
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Figure 1. TEM images of (a) normal porous silica, (b) mesoporous silica.

Figure 2. Comparison of different porous silica support for OPH
immobilization in pH 7.5, 20 mM HEPES at 21( 1 °C.
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the reduction of the loading amount might be attributed to the
decrease in the effective surface area by more close-packed
functional groups.

In contrast, positively charged OPH was almost completely
repelled from the positively charged 20% NH2-FMS, with a very
low protein loading (0.25%, w/w) and nearly zero activity.
Therefore, selective entrapment could be achieved by rational choice
and displacement of the functional groups in relation to the overall
charge of the protein. Unexpectedly, the specific activity with 2%
NH2-FMS was as high as 2691 units/mg with a protein loading
rate of 3.8% (w/w). This phenomenon could be explained by the
fact that the small coverage of amino groups is less closely packed4

and there are still plenty of local, negatively charged silanol groups.
Its overall environment still favored the entrapment of positively
charged protein. Some negatively charged amino acid residues on
the overall positively charged protein could interact with the small
coverage of the positively charged functional group as well. The
fact that even 2% NH2-FMS entrapped OPH more effectively than
negatively charged UMS demonstrated again that the organic
functionalization (-CH2-CH2-CH2-NH2) of mesoporous silica en-
hanced the affinity of the nanopores to the enzyme and induced an
increase of the specific activity. From these results, we can conclude
that fuctionalization of mesoporous silica and the type and coverage
of functional group are paramount for both high loading amount
and immobilization efficiency.

For comparison, the simple adsorption of OPH on NPS with or
without functionalization displayed lower protein loading and less
specific activity (Figure 2), demonstrating the great advantage of
rigid and uniformly open porous FMS over NPS with the non-
open pores and low surface area. The 2% HOOC-NPS displayed
only about 0.1 of OPH activity entrapped with the same amount of
2% HOOC-FMS.

As shown in Figure 3, the specific activity of the free OPH in
solution was reduced 77% after 145 days of storage. In contrast,
the enhanced specific activity of OPH entrapped in 2% HOOC-
FMS decreased only 38% after the same storage, which was still
134% of the initial specific activity of the free OPH. In fact, after
such long-term storage, the activity and protein amount in the
supernatant was still undetectable.13 This suggests that the decrease
of the enzyme activity was attributed to protein denaturation, rather
than the enzyme leaching from the FMS.

In conclusion, for the first time, we have demonstrated that as a
result of the unique mesoporous structure and surface chemistry,
the organically functionalized nanoporosity of HOOC-FMS pro-
vided both high affinity for the charged protein molecules and a
favored microenvironment that resulted in exceptionally high
immobilization efficiency (>200%) with enhanced stability, while

conventional approaches yield far lower immobilization effi-
ciency.1,3,11 It has been reported that confinement from molecular
crowding in biological cells can both stabilize and induce order-
of-magnitude enhancements in catalytic reaction rates compared
to enzymes in solution.14 We hope that rational design of organically
functionalized nanoporosity will lead to new approaches to entrap
and stabilize biomolecules for a wide range of applications.
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Figure 3. Stability of OPH entrapped in 2% HOOC-FMS and free OPH
in pH 7.5, 20 mM HEPES. The first 47 days of storage was carried out at
4 ( 0.2 °C, and the following 98 days was at 21( 1 °C.
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